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Figure 1: A giraffe and its newborn generated with techniques described in the paper.

Abstract

The giraffe and its patches, the leopard and its spots, the tiger and its
stripes are spectacular examples of the integration of a pattern and a
body shape. We present an approach that integrates a biologically-
plausible pattern generation model, which can effectively deliver a
variety of patterns characteristic of mammalian coats, and a body
growth and animation system that uses experimental growth data
to produce individual bodies and their associated patterns automat-
ically. We use the example of the giraffe to illustrate how our ap-
proach takes us from a canonical embryo to a full adult giraffe in a
continuous way, with results that are not only realistic looking, but
also objectively validated. The flexibility of the approach is demon-
strated by examples of big cat patterns, including an interpolation
between patterns. The approach also allows a considerable amount
of user control to fine-tune the results and to animate the resulting
body with the pattern.
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1 Introduction

The task of generating a computer graphics rendering of an object is
traditionally broken down into two parts: the modeling of the shape
or geometric attributes such as height, width, etc. and the modeling
of the visual attributes, or how the object is going to look. A final
integration step connects the two, that is, a visual attribute has to be
defined for every point on the surface of the object.

The separation of these two modeling tasks makes the whole pro-
cess highly flexible and powerful, and from a conceptual point of
view easier to handle. While generally good for many classes of ob-
jects, this two-step process is nevertheless prone to problems when
the geometry of the object is complex and therefore the mapping
of visual characteristics to every point of the surface is non-trivial.
Another potential drawback of this approach is that it implicitly as-
sumes that there is no interplay between the two processes which
define the shape and the visual attributes of an object. For some
objects, however, the visual aspect is the result of an interaction
between the two processes and this interaction plays a significant
role on the final result. The typical examples are patterned animals
such as giraffes and leopards. The pattern visible on the fur of an
adult animal is the result of a much earlier process which took place
while the animal was in the womb. It is important, in these cases,
to model not only the individual processes themselves, but also the
interplay between the embryo growing and the pattern formation
process.

We present a method whereby the visual attributes are defined
directly on the surface of the object and, more importantly, where
we take into account the dynamic change of shape undergone by the
object because of growth or other reasons. We show how a mam-
malian coat pattern can be generated by a biologically-plausible
model simulated on the surface of a changing geometry, where the
interplay between the pattern formation model and the geometry
plays an important role in the final result.



2 Related Work

2.1 Mammalian Coat Patterns

An advantage of using biologically-plausible models in computer
graphics is their potential to deliver more realistic simulations
which can usually be translated into more realistic-looking results,
particularly as procedural texture methods. In a biological context
the images generated can be used as a powerful argument either
against or in favour of the validity of the model [27].

The basic reaction-diffusion (RD) systems studied in biol-
ogy [30, 20] can generate a set of interesting but visually limited
patterns (stripes, spots, etc). Turk [32] developed the suggestion
made earlier by Bard [1] about cascade RD processes, where a RD
system is simulated having as a starting point a previous RD simu-
lation. This has enabled the generation, for instance, of the pattern
of large and small spots found on cheetahs. Variations on the way
two or more RD processes interact can lead to many different pat-
terns. The reticulated pattern found on giraffes is explained by the
simulation of two different RD systems (spots formation and stripe
formation) together into one. Turk also introduced the idea of simu-
lating the RD process on the surface of the object being textured, an
important contribution which avoids many of the problems of tex-
ture mapping. However, his method did not use information about
the geometry of the model to drive the pattern mechanism.

Witkin and Kass [37] extended the range of possible RD patterns.
Their main contribution was to extend the basic idea of RD by in-
corporating anisotropy into a RD system, a suggestion also made
by Bard [1]. In their work, anisotropy is introduced by assigning
different diffusion rates in the RD system as a function of direction
in a local frame of reference. The control of different diffusion rates
for different parts of the surface is achieved through diffusion maps
defined by the user. In some sense, the use of diffusion maps in-
directly transfers to the user the task of pattern definition since the
user has to provide an array with values for the anisotropic diffu-
sion rates. It is fair to say that while both papers show a giraffe-like
pattern among their examples, neither patterns are very convincing
(while the giraffe pattern is very striking, it is quite amazing how
far from the true pattern even skilled artists allow themselves to go).

2.2 Integration of Pattern and Shape

Most of the work on the integration of the shape and the visual
aspects of an object has been done in the context of texture map-
ping and focussed on how to deal with the problems intrinsic to the
technique, such as texture placement and texture distortion. More
than twenty years after texture mapping was first described by Cat-
mull [5], the graphics community is still addressing such problems.
This is clearly a strong motivation for researching alternative meth-
ods for pattern placement and much progress has been made.

In [16], for example, an interactive system for texture placement
is proposed. The idea is to define the mapping indirectly via user
manipulation of the texture while it is being placed on the surface
of the object. Objects and camera are constrained to remain fixed
during the whole texturing process, which can be a great limitation
is some cases. Also, it is not very clear how the technique would
work when the same texture is shared by many surfaces.

An alternative approach for texture placement is to paint a texture
directly onto the surface of the object [14]. The objects are modeled
as a collection of many very small polygons from which a param-
eterization of the surface can be derived. The mapping function is
indirectly established by the user “painting” on the surface. There
is no distortion to be corrected since there is no a priori texture
map to be distorted. The drawbacks are that i) the final result is still
highly dependent on the artistic abilities of the user and therefore
achieving a visually elaborate texture can be difficult and ii) as pre-

sented, the approach does not handle a pre-existing texture, which
could be useful to correct texture distortions by visual inspection.

A solution to minimize texture distortions when mapping pre-
computed textures was presented in [17]. They define a metric
for the distortion and try to minimize its value globally. This ap-
proach is limited since for very complex objects this minimization
step might not be feasible. One alternative is to use a mapping
function which is local and not necessarily continuous. In other
words, the object is split into charts and a collection of charts is
called an atlas. The creation of charts takes into account surface
curvature and the user interacts visually to achieve the best atlas for
a particular object. The idea behind charts is to represent a non-
developable surface as a set of developable surfaces. A developable
surface is a surface that can be deformed to planar shape without
changing length measurements in it [6]. In a similar fashion, the
work presented in [3] “cuts” a given 3D parametric surface into
regions which can be flattened out without warping. The minimiza-
tion of distortion is achieved through a compromise between cuts
and distortions. A more recent approach with the same flavour was
presented in [24], where texture patches are pasted onto an arbitrary
surface mesh, exploring the fact that small regions of the surface are
locally mappable onto a 2D plane.

When the user has control over how the texture is being gen-
erated some more effective ways to avoid distortions are possi-
ble. The method by Witkin and Kass [37] uses models described
parametrically as a collection of patches and synthesizes textures
with RD systems. The problem of texture distortion caused by
the mapping from the texture parameter space to the surface space
was solved in an integrated manner. The texture synthesis incorpo-
rates a correction factor for the distortion, that is, the diffusion rates
present in the RD system were controlled to account for the geo-
metric distortions present on the surface. This correction, however,
only works for surfaces that can be described by a single parametric
function, usually not the case for complex surfaces. Seamless pe-
riodic textures were created using cyclic boundary conditions, i.e.,
points that shared a common boundary in different patches had the
same boundary conditions. In the RD context this means that the
chemicals involved have the same concentrations at the boundaries
of the parametric patches.

There has been little work addressing integration as a task per
se, outside the context of texture mapping. Two remarkable ex-
ceptions are the work by Turk [32] and by Fowler, Meinhardt and
Prusinkiewicz [8]. Both papers present variations on the funda-
mental idea of computing the pattern on the surface of an object as
a “growth-in-place” procedure.

Turk’s work, as mentioned in the previous section, used RD tex-
tures. Instead of mapping the generated pattern onto a polyhedral or
parametric model, his approach simulates the RD system on the sur-
face of model, without the intermediate mapping from texture space
to object space. Basically, the surface of the model is divided into
cells and the RD system is simulated directly on the mesh formed
by these cells. The cells for the simulation are the regions of a
planar variation of a Voronoi diagram [22] computed from a poly-
hedral description of the model. The approach does not have the
usual problems of texture discontinuity and distortion since there
is just one mesh over which the RD system is simulated. Never-
theless, this solution does not make any use of the geometric infor-
mation about the shape of the object being textured and therefore
the texture on the surface can appear strangely regular and artifi-
cial. Moreover, to achieve a more natural-looking result, Turk in-
troduced adjustments so that the texture could grow faster in some
areas and slower in others. This was achieved with the user defining
initiator-cells and different diffusion rates for different parts of the
surface.

Fowler et al. [8] similarly approached the modeling of seashells
by discretizing the growing edge of a parametric model of a shell



into polylines. Each segment of the polyline is treated as a cell
for the one-dimensional RD simulation. The geometric and visual
attributes of the shells are easier to integrate since both shape and
texture can be unequivocally expressed as a function of time. The
integration is straightforward since time can be used as an integra-
tion factor. Their exceptional results suggest that the use of an inte-
grated approach is, in some cases, not only useful but imperative.
Another closely related work is by Fleischer et al [7] on cellu-
lar texture generation. In many ways their work is more general
than ours, allowing for full programmable and context-sensitive be-
haviour of the cells creating the textures. As usual in modelling,
however, too much power can be a bad thing as there is no ob-
vious relationship between the equations governing the cells and
the results. In other words it is possible to generate an extraordi-
nary range of models, but hard to see what they are models for. Our
overall goal is to match for mammalian bodies and coat patterns the
level of achievement reached by Fowler et al. There will be many
critical differences in the methods used. First, we do not believe
that mammalian coat patterns are well modelled by RD methods,
and we use a different model, called Clonal Mosaic, summarized
below. Second, the process obviously has to take place at least in
two dimensions corresponding to the skin surface. Finally, since in
mammals the pattern is established in the fetal stage, and undergoes
changes due to body growth both before and after birth, we have to
integrate pattern formation and growth in an effective way.

3 Basic Tools and Data

3.1 How and When is the Pattern Established

The coloured pattern in mammalian coats is produced by the vari-
ous colours of the hair constituting the pelage, as the collection of
hair is called [29]. The skin of mammals is made of two layers,
a superficial layer called the epidermis, and an inner layer called
the dermis. The epidermis is composed of flattened cells, and hair
is produced by an invagination of the epidermis called a follicle.
The hair is formed by division of cells in the bulb at the base of
the follicle. Pigments giving the hair colour are incorporated into
the hair by melanocytes, basal cells of the epidermis specialized in
the production of melanin [26]. Melanins are polymers synthesized
from thyroxine (an amino acid) and have colour ranging from pale
yellow to black, through buff, red-brown and brown. Basically, the
colour of the hair is determined by the amount and the nature of the
produced melanin. This same melanin contributes to the coloura-
tion and protection of the skin in humans as well. The melanocytes
have migrated during embryonic development from the neural crest
to their final position in the epidermis as part of a complex of cells
called an epidermal melanocyte unit.

Direct observation of mammals shows that their characteristic
coat pattern is already established at birth, and after this is modified
only due to differential growth of the body. For instance, the spots
on an adult giraffe can easily be recognized from the spots of the
same individual at birth. Note that sometimes the spots can fade or
disappear due to a change in “colour map”. For instance, lions have
spots at birth, which quickly fade and are not visible in the adult.
Therefore, we can distinguish two phases in the creation of the pat-
tern. The first phase happens in the fetal stage, where both growth
and pattern formation take place. The second phase happens both
before and after birth. In this phase the pattern formation process is
over and only differential growth affects the pattern. Of course the
pattern itself is only visible after the pelage has grown, but we can
assume that the distribution of the melanocytes responsible for the
colour has already taken place.

We have estimated the bounds for the starting time of the first
phase and second phase as follows [33]. The start of the pattern
formation process is most likely as soon as the melanocytes have

Figure 2: A 35-45 days giraffe embryo (457 days gestation) from
[21].
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Figure 3: Fetal Length for Giraffes.

finished their migration from the neural crest, about 35 days for the
giraffe (out of 457 days for the total gestation time). At this time the
fetus already has a recognizable shape, as can be seen in Figure 2,
which shows a giraffe embryo with an estimated age of 35 to 45
days.

The upper bound for the end of phase one is the end of gestation,
but there are reasons to believe that it might be sooner. Murray [21],
from considerations based on a RD model, deduced that the total
duration of the pattern formation phase is quite narrow, but that
does not necessarily apply to other models, such as clonal mosaic.
In our simulations we have generally assumed a time of about 200
days for the giraffe (about half of the gestation time). A very useful
fact is that during this whole time we can safely assume a linear
growth. Figure 3 shows the plot obtained for the length (from crown
to rump, in centimeters) of the giraffe fetus from measurements
published in [23] and [2]. We would like to note that it actually is a
distinct advantage to “go back” to the fetus, since we have only to
use a canonical fetus, which will then be grown to the dimensions
of a given individual by the process described in Section 3.3.

3.2 The Clonal Mosaic Model

The model is explained and illustrated in a paper by Walter,
Fournier and Reimers [35] and we will only stress the main points
here. The Clonal Mosaic theory for mammalian coat pattern for-
mation proposes that the typical yellow-black stripped and spotted
patterns occurring in several species of mammals, reflect a spatial
arrangement —a mosaic — of epithelial cells which derive from a sin-
gle progenitor, i.e., they are clones. Hence we use the name Clonal
Mosaic (CM). Different hair colors result from different types of
underlying cells. The model takes into account important and re-



cent biological experimental data such as the migration of and in-
teractions among cells [11, 28], particularly epithelial cells [13].
The model is appealing for procedural texture synthesis in com-
puter graphics since it can provide a large number of 2D patterns
with a relatively small number of parameters. These patterns can
be used inside a traditional texture mapping framework. Another
strong appeal of the CM model from a computer graphics point of
view is its reasonably straightforward extension for simulation over
arbitrary surfaces. Thus, it is possible to generate patterns directly
on the object’s surface, without the mapping step. In an integrated
framework using the CM model as the texture generator, the geom-
etry of the object can then play an important role in the patterns
generated, increasing the realism of animals synthesized this way.

3.2.1 Implementation

The patterns we will use are generated by a simulation of the CM
process. For all patterns of interest we use a maximum of three
types of cells named foreground, middleground and background.
The type of a cell defines its behaviour in the system. Table 1 sum-
marizes the main parameters for cells and their meanings.

(a) Giraffe

Figure 4: Pattern on giraffe.

Attribute M eaning
Color RGB
Division Rate Mean time between divisions
Controls the absolute and relative
numbers of cells of agiven type
Initial Probability Probability to be of agiven type
Mutation Probability | Probability to switch to other type
Adhesion Drag between types
Controls the tendency of cells
to stay together

Table 1: Attributes of a cell.

Cells are modeled as points for computing purposes. Points are
usually the first choice to represent a biological structure such as
a cell [12]. To turn points into a tessellation of the surface, we
compute their Voronoi polygons. The Voronoi polygon of a point
in a given domain is the region of the domain that contains all the
points closer to that particular point than any other [25]. An initial-
ization step randomly distributes among background cells a number
of foreground cells. The same result can be accomplished by having
background cells switch to foreground cells in a controlled manner.
Cells then divide at rates that are characteristic of their type (usu-
ally the foreground cells divide faster than the background cells).
As new cells appear they try to maintain a constant area (in fact a

volume, but we assume that the thickness of the layer is constant)
by repulsing their immediate neighbours. The repulsive force in the
model is a linear function of the distance to the neighbours, reach-
ing zero at a distance equal to the repulsive radius of influence of
cells. Relaxation steps allow time for the cells to repel each other.
For each cell and each relaxation step the resultant force causes
a displacement in the direction of the force and proportional to both
the force intensity and to the adhesion. The adhesion factor is char-
acteristic of the pair of cells interacting. The new position of the
cell is then computed from the displacement. This is done in paral-
lel for all the cells. In order to model anisotropic displacement, the
actual cell displacement is the weighted sum of the previously com-
puted displacement and its projection in a given anisotropy vector.
For the sake of efficiency the relaxation step is not applied at every
cell division event, but on a user controlled schedule defined before
the simulation starts and kept constant for the whole simulation.
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Figure 5: Rosettes.

This model and its simulation can produce a large range of pat-
terns closely resembling mammalian patterns, such as the spots
of the giraffe (shown in Figure 4), the stripes of the tiger (with
anisotropy), the rosettes of the leopard (shown in Figure 5) and of
the jaguar with three types of cells and controlled mutation, i.e.,
when a given cell splits it can be of a different type than its par-
ent. A fundamental motif of these patterns is a Voronoi diagram
structure, seen in its purest form in the reticulated giraffe (Giraffa
camelopardalis reticulata). All these results were computed in a
square domain. The similarity of the results and the real patterns
was verified with statistics on size distribution and closeness to an
ideal Voronoi diagram (see [33] and [35]).

3.3 Controlling Shapes and Pattern Growing Pa-
rameters

With only a very small loss in generality, we assume that the pat-
terns will be integrated with polygonal models of the animal bodies.
Since the body has to be grown over a span of time which covers
gestation up to adulthood, we need a flexible system to apply and
control the growth, but at the same time we need to be able to deal
with very sparse data. We will use the techniques described by Wal-
ter and Fournier in [33, 34] and briefly summarize them here.

In that work they presented a technique to transfer growth data
to polygonal models of animals. For each section of the body that
will grow and generally be transformed independently, a cylindrical
coordinate system is attached to it. The cylinder is positioned so
that it encloses that part of the body it controls (this is not strictly
necessary, but convenient for the user).

These cylinders are predefined by the user, and are designed so
that they segment the object into coarse groups of geometry that
represent the object in a higher structured level. For each cylin-
der it is also defined a pair of features which indirectly control the
cylinder’s scale. Each feature is a length measurement between two
specific points on the body. Once this structure of cylinders and fea-
tures is in place, the user can modify any body part or the whole by
acting on the features. In the case of growth simulation the fea-



tures are normally chosen so that they correspond to the available
or obtainable growth data.

The cylinders are part of a classical modelling hierarchy. Fig-
ure 6 shows an example of the 18 cylinders defined for a giraffe’s
model. The blue sections of the body are the triangles which belong
to more than one cylinder. For clarity reasons the features are not
shown in this figure.

Figure 6: Giraffe body and 18 control cylinders.

The main difference between a normal transformation hierarchy
and the one used for controlled transformation such as growth is
that since the growth data available is generally expressed in ab-
solute terms, only translation and rotation are inherited from the
ancestors in the growing hierarchy, but the scaling is local and in
absolute terms. Each cylinder A has its own canonical coordinate
system, and an associated matrix to transform to the world coordi-
nate system:

Mwea = [TW<—ARW<—AGW<—A]

where Tw 4 is a translation matrix, Rw . 4 iS a rotation matrix
and Gwa Iis a scaling matrix, the growth matrix. The growth
matrix is given by:

Li 0 0 0
. 0 Ra 0 O
Ga=1 0 0 Ra 0
0 0 o0 1

where R4 and L, are the world radius and length of the cylin-
der, which can be easily derived from such measurements as the
length and girth of features of the real animal or its pictures (see for
instance the black lines labelled A through R used for the giraffe
fetus shown in Figure 2).

The operation to transform a point Pg in feature B (associated
with a cylinder B) to a point P4 in the coordinate system of its
parent feature A (associated with cylinder A) is:

Pa = [TAHBGleAHBGB]PB

where:

Tacp = [MacwTwe—BTacw Mw 4]

One then applies these transformations to convert to the coor-
dinate system of the ancestor of A, until the root is reached, at
which point we have the point in world coordinate system. The
growth process then consists in applying these transformations to
each needed vertex for each time at which we have measurements
for the feature. The growth data can be interpolated between time
using any suitable interpolating formula.

To guarantee continuity as the shape changes, and to achieve a
degree of smoothness in the resulting surface, the cylinders have to
overlap, and therefore one has to decide how to weight the influ-
ence of the cylinders on a vertex which belongs to more than one.
The solution proposed uses a weight inversely proportional to the
distance from the vertex to the axis of the cylinder.

It is important to note that applying the technique has two prac-
tical consequences: any measurement from a real animal once ap-
plied to the polygonal model has the effect of changing the propor-
tions of the original model (which could be an idealized or other-
wise fictitious animal) to the proportions of the real measured an-
imal. That means that for a single model the technique can create
individual bodies with their own measurements [36]. The second
point is that the same hierarchy can be used for animation, since it
allows for independent rotations and translations to be applied to
the various local coordinate systems enclosing the body.

4 Integration of Patterns and Shape

4.1 Simulation of the CM Model on an Arbitrary
Surface

This section describes how the CM model presented in Section 3.2
is integrated with the shape control presented in the previous sec-
tion. This will allow the synthesis of CM patterns directly on a
shape-changing geometry, such as the body of the animal growing
and illustrated in Figure 12. Figure 7 shows a schematic repre-
sentation of the whole process of pattern formation development in
connection with the body growing.

Growth Backwards Growth

i Animal with
Generic Canonical Simulate.Pattern
Animal Formation on Pattern at
Model Embryo growing any desired
Embryo age

Figure 7: Pipeline of the system.
We describe below the steps of this process in turn.

e Deriving Cell Splitting Rates from Growth | nformation
Our patterns can be viewed as many small cells multiplying
to form a specific arrangement — the growth of a tissue. Shape
can be indirectly expressed through growth-curves and the fi-
nal shape of a given natural object is a result of cells dividing
at different rates. It is reasonable therefore to use growth as
an integration factor driving the patterns and the changes in
shape. In practice we need to be able to compute how fast
the initial set of cells should split in order to keep up with the
increase in area of the object.

For the following description we will assume, without loss
of generality, that we only have 3 types of cells called F,
B, and M. The total number of cells is Ny = > N; where
i = F,B, M. Attimet = 0 we have the individual area
for a single cell as a = j\‘,—g where Agq is the initial area of
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Figure 8: Voronoi diagram of cells generated directly on the polygonal mesh.

the surface of the model, usually the area of the model for
the time when we estimate that the pattern formation process
starts, and Ny is the arbitrary initial number of cells. The
goal is to keep the area of a single cell constant as the model
grows. We also have to establish the relative rates of split-
ting between the different types of cells. We will call these
rates gr, gs, gar, With > g; = 1. The net increase in the
number of cells is proportional to the increase in the area of
the model, thatis AN = 24 A factor k = A—Ng is com-
puted to express the net increase in the number of cells among
the different types and the net increase in the number of cells
for each type is AN; = k N; g;. The instantaneous rate of

splitting is s; = & and the rate r; at which we need the
AN,

cells to split is the reciprocal of s, that is, r; = Z~.

Triangulation of the M odel

The animal models we are using are represented by triangular
meshes. In the context of the CM model the use of triangles
guarantees that the tessellation provided by the Voronoi poly-
gons, which expresses the pattern, matches exactly the origi-
nal triangular mesh, since triangles are planar. The more com-
plex mesh formed by the Voronoi polygons exactly replaces
the original triangle mesh, i.e., the pattern is the surface. This
has a distinct advantage to be explored in animation tasks,
since the pattern will just follow whatever animation informa-
tion is applied to the model.

Distributing Random Points on the Surface of a Polyhe-
dral Model

The initial distribution of random points representing the cells
on the surface of the polyhedral model representing the ani-
mal is implemented with an algorithm presented by Turk [31].
This algorithm guarantees an uniform distribution of points on
the surface based on the relative areas of the triangles describ-
ing the surface.

Relaxation of Paintson the Surface of the M odel

The relaxation process used to maintain cell size has to deal
with the cells defined on the surface of the model. We have
to be able to compute distances on the surface of the model
between cells that are neighbours. We use approximated dis-
tances as explained below. With an increase in cost we could
use more sophisticated solutions for computing the shortest

path between cells, such as the one presented by Lee et al.
in [15]. Ideally, all faces which have cells within the area

s

Figure 9: Mapping cells from face to face.

defined by the repulsive radius should be considered. This
would imply an arbitrary, possibly large, number of neigh-
boring faces. To avoid this cost we have restricted the search
for neighbours among the faces which share either an edge
(called primary neighbours) or a vertex (called secondary
neighbours) with the face in question. That is equivalent to
stating that the shortest height of a triangle is longer than the
effective radius of repulsion. In most practical cases this lim-
itation does not significantly affect the results since the ratio
between the number of cells versus number of faces guaran-
tees that all neighboring cells are living in either primary or
secondary faces. Ideally, we would have to guarantee that all
cells in tertiary faces (not primary neither secondary neigh-
bours) are at a distance greater than the radius of repulsion.
If there is a minimum angle for the triangles and a minimum
edge length then one can show that there is a minimum dis-
tance between any point of the face in question and any ter-
tiary face.

The distances are computed on the plane of the face where
the cell lives. Therefore, we need a way of mapping all neigh-
boring cells to this plane. For each pair of faces P and N
that share an edge we precompute the two rotation matrices
Mp_>n and My_>p which bring a point defined on the
plane of P to the plane of IV and vice-versa. For primary
neighbours the mapping is trivial using the precomputed ma-
trices. For secondary neighbours we use a sequence of rota-
tions around the edges which define a path between the face in
question and the secondary neighbour. In order to update the
cell’s position due to the relaxation forces, cells travel freely
and can eventually move to another face. When a cell changes



face we find which edge the cell crossed and using the pre-
computed rotation matrices we bring the cell’s position onto
the plane of the new face. This process is repeated until the
cell rests on some face, as illustrated in Figure 9. The amount
of traveling a given cell undergoes is arbitrary and for some
geometries it is possible that the cell returns to its original face
(for example, on a thin giraffe leg).

Computing the Voronoi Diagram on a Surface

Okabe [22] defines a polyhedral Voronoi diagram as a \oronoi
diagram where the sites are defined on the surface of a polyhe-
dron and the distances are measured on this surface. Comput-
ing the exact polyhedral Voronoi diagram can be quite com-
putationally expensive since for any two arbitrary sites on the
surface there are many possible paths and finding the shortest
one is a difficult problem [9]. For this reason, some solu-
tions to this problem make use of approximations to the real
\Voronoi. The solution proposed by Mount [19], for instance,
computes a polyhedral Voronoi diagram where the sites are
used to create new polygons and a path between two sites al-
ways goes through edges of the polyhedron.

We use an approximation for the actual Voronoi diagram
where the final diagram for the whole polyhedron will be the
combination of the individual Voronoi diagrams computed for
each cell in the triangles comprising the polyhedron. There is
some redundancy involved, since the elements of the Voronoi
diagram between cells on different triangles will be computed
twice (or more for triangles sharing only vertices), but this is
more than offset by the fact that triangles and their neighbours
are in effect used as buckets to limit the search for neighbours.

Figure 10: Giraffe Cube.

Turk used a similar idea in his RD work [32] but in his case
he did not need to explicitly maintain the diagram since it was
only used indirectly to establish diffusion amounts between
cells. In our case, the pattern is defined by the Voronoi dia-
gram and therefore we need to build and maintain the Voronoi
cells as a whole. The deviation from an exact computation
of a Voronoi diagram is not critical in our case for two rea-
sons. First, the pattern is defined through a large number of
cells per triangle, which means that the approximated solu-
tion is correct for all cells but possibly the ones that are closer
to the edges of the face. Second, the pattern is defined by
the overall combination of many cells, which possibly spread
over many faces. It is possible that the cells with Voronoi er-
rors are “inside” a given pattern element and therefore are not
individually visible.

In order to compute the Voronoi diagram for all cells resting
on a single face we map all neighboring cells to the plane of
the face in question using the approach explained above. With
all cells on the same plane, we compute the Voronoi diagram
on this plane. The Voronoi polygons are then clipped against
the edges that define the face. Figure 8 illustrates this process.
In (a) we show both cell’s centers and the Voronoi borders and
in (b) we show the end result with the overall pattern. There
are two special simpler cases that we should mention but in
practice are often negligible. When a face has zero or one cell
only, it means that the Voronoi polygon for this face is the face
itself.

4.2 Pattern Generation without Growth

(a) Birth (b) 11 months

(c) 22 months

(d) 60 months (adult)

Figure 11: Giraffe Growth.

Although the CM model was designed to work in conjunction
with a shape changing geometry, we can also use it as a pattern
generation mechanism on a static body model. The pattern forma-
tion process in this case is driven by pre-defined parameters, that is,
splitting rates of cells are not computed from growth information.
Figure 10 shows the result of simulating a giraffe-like pattern on the
surface of a cube. The spots are distributed over the whole shape
without visible discontinuities and are very similar to the pattern on
the real giraffe or the two-dimensional simulation (see Figure 4).

Once a pattern is computed on a static model, we can still ap-
ply the growth transformation in order to obtain models at different
ages with the same pattern. This is illustrated in Figure 1 where we
show an adult and a newborn giraffe with the same pattern. In order
to adapt the pattern computed for an adult body to a newborn body
we apply the same growth transformation applied to the adult model
to all cells and re-compute the Voronoi expressing the pattern. As a
result the pattern can be output as uniformly coloured convex poly-



gons (the cells of the Voronoi diagram). This is the approach used
in the images in the paper. Alternatively, to save space, if there is a
large number of cells per triangle, the original triangles of the mesh
can be output with their colour pattern as a local texture.

The real measurements where determined from photographs of
real giraffes and averaged from a few individuals. Figure 11 shows
yet another result illustrating the growth after the pattern is already
established. The giraffe body is grown from the newborn propor-
tions to the adult (about 5 years old). It is important to note that if
the pattern is close to a Voronoi diagram, and if some parts of the
body grow anisotropically, such as the neck, whose length grows by
a factor of 4 while its diameter grows by a factor of 3, then the final
pattern cannot be a true Voronoi diagram. This can be observed on
Figure 1 (even though it is not obvious without measurement), and
more importantly has been verified experimentally.

4.3 Pattern Generation with Growth

In this section we show the results of simulating the CM model
with splitting rates being computed from the growth information as
discussed on item 1 of Section 4.1. The whole point of integrating
the pattern formation and growth is that the two are tightly linked in
the fetal stage and hopefully this approach will create more accurate
models of patterned animals.

(a) 35 days

(c) 150 days (d) 300 days

Figure 12: Pattern Development.

Figure 12 shows four phases in the development of the giraffe
pattern on the fetus at 35 days (estimated start of pattern develop-
ment), 90 days, 150 days and 300 days. It should be compared to
the pattern of the giraffe at birth. Notice that the shape gradually
approximates the proportions of the newborn while the spots get
bigger. Figure 13 shows the same fetus at 35 days, but put in a
position similar to the real one shown in Figure 2, for easier com-
parison (we do not suggest that the pattern is actually that visible
on the embryo, just that it is there). From the fetus to the adult, the

body size grows by a liner factor of 100, from 3¢m to 3m.

Figure 13: Fetus and cells at 35 days in fetal position.

5 Control of Parameters

From our simulations it is clear that differences in growth rates
alone do not explain the differences in spot sizes, for instance
between the main body and the leg. Other factors, such as the
anisotropy direction for the tiger stripes and the specific markings
on the face, show clearly that there are phenomena external to the
CM system that affect the parameters. To deal with this, and to also
be able to introduce arbitrary effects (such as writing our names
with the spots of the cheetah), we introduced a way to control ex-
ternally the parameters of the CM model. Since the cylinders are
already in place to control the shape and growth, they are also con-
venient to provide support for textures which can control any of the
parameters used in the CM system. Each cylinder can point to many
ordinary image files, with a range to map the texel value to CM pa-
rameters. It is of course convenient that the cylinders have a natural

Figure 14: Tiger anisotropy and colour controlled by textures.

parameterization, being developable surfaces. For each point of the
polygons, its cylindrical coordinates are determined from the inter-
section of a line between the point and the location on the cylinder
axis with the same z (coordinate along the cylinder axis) and the
cylinder. This is mapped to the (0, 1) range and used to index into
the texture file. This is very similar to the technique of two-pass
texture mapping described by Bier and Sloan [4].

Figure 14 shows a striped tiger (actually elongated spots), where
the orientation of stripes and colour of body parts was controlled
by textures on the cylinders. Another use of this is illustrated on
Figure 1 where we prevented spots from appearing on the head and
lower parts of the legs of the giraffe.

6 Conclusions and Future Work

We presented an approach that integrates a biologically-plausible
pattern generation model with a body growth and animation system
that can use experimental growth data to produce individual bodies
and their associated patterns automatically.

We used mainly the example of the giraffe, because the reticu-
lated giraffe presents a pattern that can be objectively validated, and
also because of the tremendous change in overall size and propor-
tions between the fetus and the adult. We showed as well that the



Parameters o wr | time wd mitosis F | mitosisB | a FF | a BB | anisotropy
Giraffe (fig. 1) 18 | 2.4 80 0.067 10 150 0.9 0.6 0.0
Pink panther (fig. 15) | 18 | 2.6 10 0.066 10 120 0.9 0.2 0.0
Pink tiger (fig. 15) 18 | 11 80 0.01 10 50 0.7 0.2 0.5
Interpolation (fig. 16) | 18 | 1.85 45 0.038 10 85 0.8 0.2 0.25

Table 2: Parameters for some of the computed patterns.

(a) Spots (b) Stripes

Figure 15: Pink panther and pink tiger.

Figure 16: Interpolation between pink panther and pink tiger.

system can “do” most of the big cats, even though more detailed
work is still needed in this respect. The method also allows a con-
siderable amount of user control through cylinders which control
the growth, the animation and the parameters through textures.

There are many avenues left for extensions of this work. Since
the parameters for different patterns are part of the same set, it is
very easy to interpolate between different patterns by interpolating
between parameters. Of course, there is no guarantee that the pat-
tern will look to us as a legitimate intermediary between the two
extremes. As a simple example, consider the pink panther and the
pink tiger shown in Figure 15. The interpolated result is shown in
Figure 16. For these kind of results the parameters are interpolated
beforehand and a CM simulation is triggered with the new param-
eter values. It is clear in this case that the interpolated pattern does
not yet exhibit much anisotropy, but the number of spots has vis-
ibly increased. In this example we kept the same polygonal mesh
for both bodies (the tiger), even though it is possible to morph the
bodies as we morph the pattern.

Another interesting immediate possibility is to try to synthesize
a giraffe pattern directly as a Voronoi diagram, overpassing a CM
simulation and considering the fact that the overall giraffe pattern is
similar to a Voronoi diagram. On another front, we want to use the
texture control to generate realistic face markings (again, the CM
model will not be directly responsible for it). Our long term goal
is to extend the morphing capabilities of the system by using gen-
eralized cylinders instead of ordinary cylinders to better control the
growth and the shape. This will also allow us to define the shape
parameters from real animals and pictures thereof in a more power-
ful way. Naturally, in mammalian coats the pattern is expressed as
fur, and we plan to use our system to assign colour to simulated fur,
as the final look very much depends on the filtering role of hair. The
fur can be distributed on our polygonal models in a manner similar
to the one described in work by Van Gelder and Wilhelms [10]. In
addition, we have a method to control the behaviour of the entire

pelage while allowing individual motion to single hairs. Finally, a
more thorough exploration of the parametric space (maybe a la De-
sign Galleries [18]) for the CM model will certainly be rewarding.

Table 2 shows the CM parameters used for some figures. There p
is the number of relaxation steps per simulated day, wr is a weight
applied to the ideal radius within which cells can cause a displace-
ment, time is the total simulated time (days), wd is the strength
at which a cell repulses its neighbours, mitosis are in average days
between divisions, « is the adhesion (all cross-adhesions were set
t0 0.0), and the anisotropy is the length of the anisotropic vector (to
be compared to wd). In the tiger images, the displacement is 80%
in the anisotropy direction.
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